

3.3 Intermolecular Electron Delocalization

Intermolecular MO Interactions in the Solid State

- close packing results in (weak) electronic coupling between π MO of matching symmetry
- interaction of π MO can be expressed in linear combination, resulting in (small) splitting

- HOMO interacts with HOMO, LUMO interacts with LUMO, because of same parities
- no interaction between HOMO and LUMO, because of opposite parity & energy difference
- **MO interactions are not the reason but the consequence of other π interactions !**

Model for Band Structure in Organic Crystals

- band structure computed using a basis set $\psi_{k,i}$ built from localized molecular orbitals ϕ_i of the isolated molecule i , which have been adapted for translational symmetry (Bloch states):

$$\psi_{k,i} = \frac{1}{\sqrt{N}} \sum_{\vec{R}} \phi_i(\vec{r} - \vec{R}) e^{i\vec{k}\vec{R}}$$

where \vec{r} is the position within the unit cell and \vec{R} is a translational element of crystal lattice in direct space (Bravais lattice), in terms of its unit vectors:

$$\vec{R} = n_1 \vec{a} + n_2 \vec{b} + n_3 \vec{c}$$

and the wave vector \vec{k} is a lattice vector in reciprocal space (by Fourier transform of direct space) in terms of its unit vectors:

$$\vec{k} = m_1 \vec{a}' + m_2 \vec{b}' + m_3 \vec{c}'$$

- “tight binding model” based on “linear combination of molecular orbitals” (analogous to LCAO for covalent bond) under periodic boundary conditions

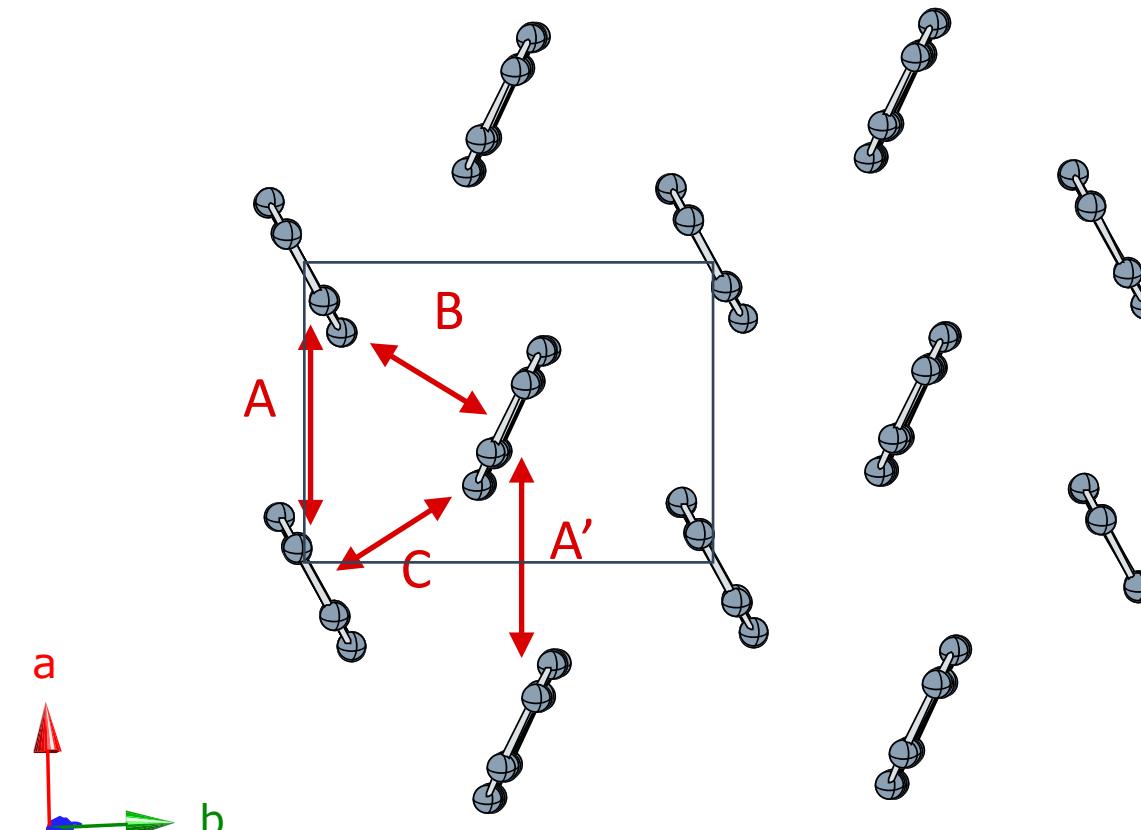
Model for Band Structure in Organic Crystals

- the effective one-electron Hamiltonian matrix elements are a sum over non-zero couplings between pairs of molecular orbitals originating from neighboring molecules i and j):

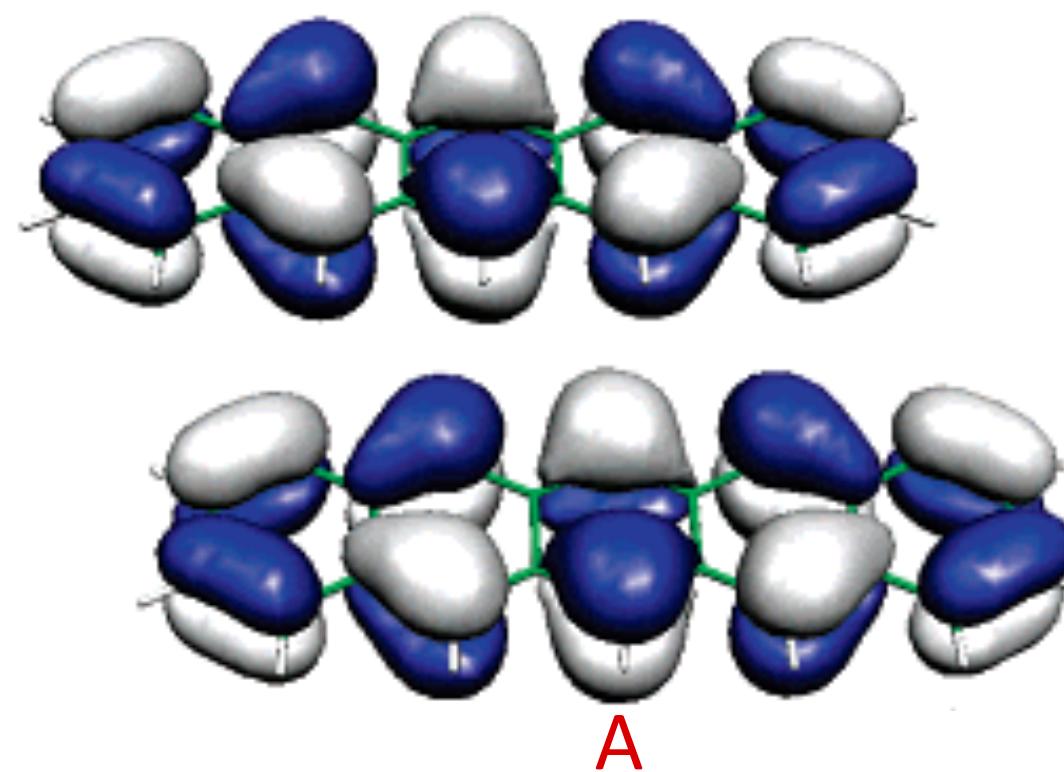
$$H_{kij} = \langle \psi_{ki} | H | \psi_{kj} \rangle = \sum_{\vec{R}} e^{i\vec{k}\vec{R}} \langle \phi_i(\vec{r}) | H | \phi_j(\vec{r} - \vec{R}) \rangle$$

- given that the basis elements are non-orthogonal, the spatial overlap of molecular orbitals are given by the matrix elements:

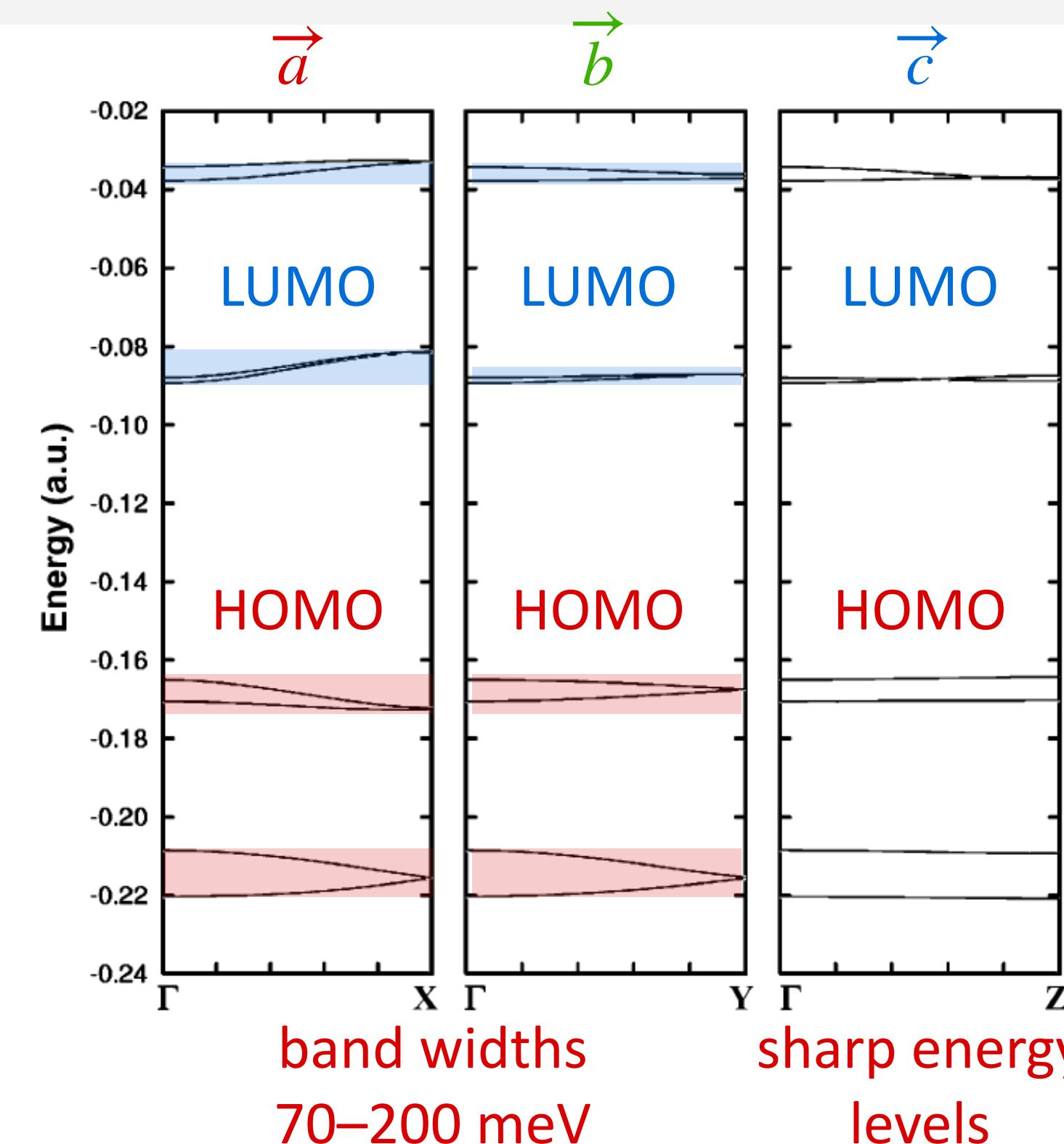
$$S_{ij} = \langle \phi_i(\vec{r}) | \phi_j(\vec{r} - \vec{R}) \rangle$$


- band energies are obtained by solving the matrix eigenvalue equation for each value of \vec{k} (which is continuous but needs to be discretized):

$$H_k C_k = \epsilon_k S_k C_k$$

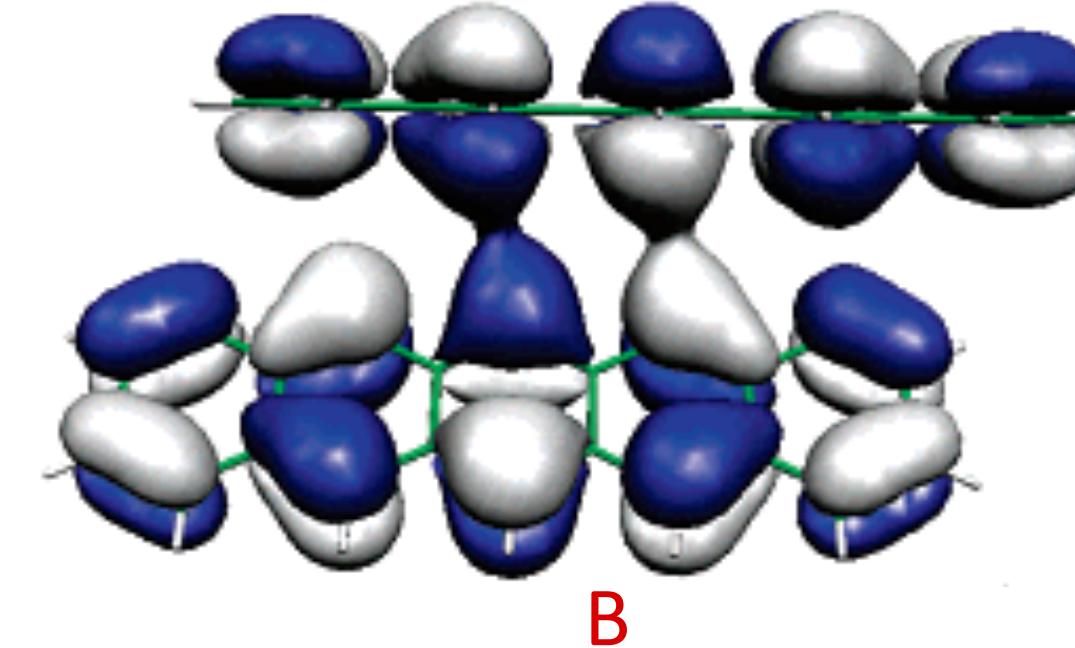
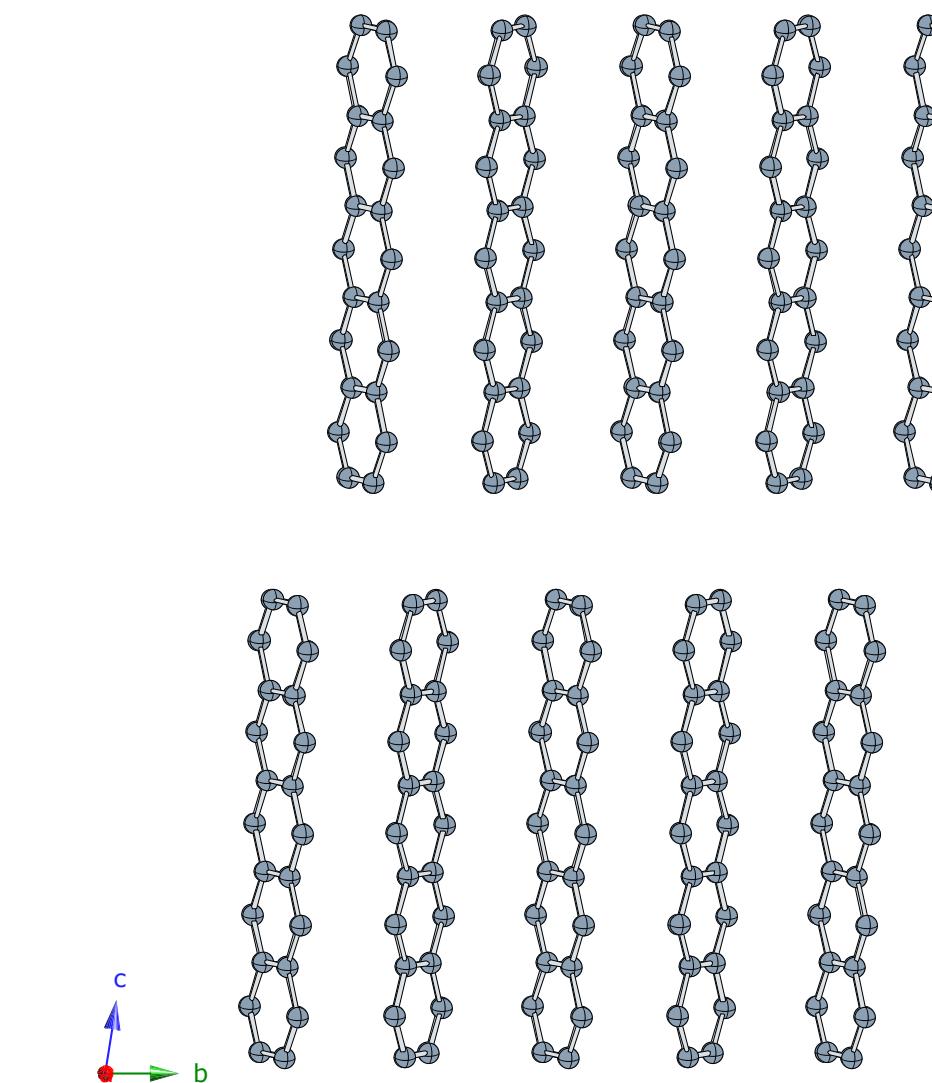

where ϵ_k is the energy and C^k is the matrix of expansion coefficients (both depending on \vec{k})

Band Structure of Pentacene

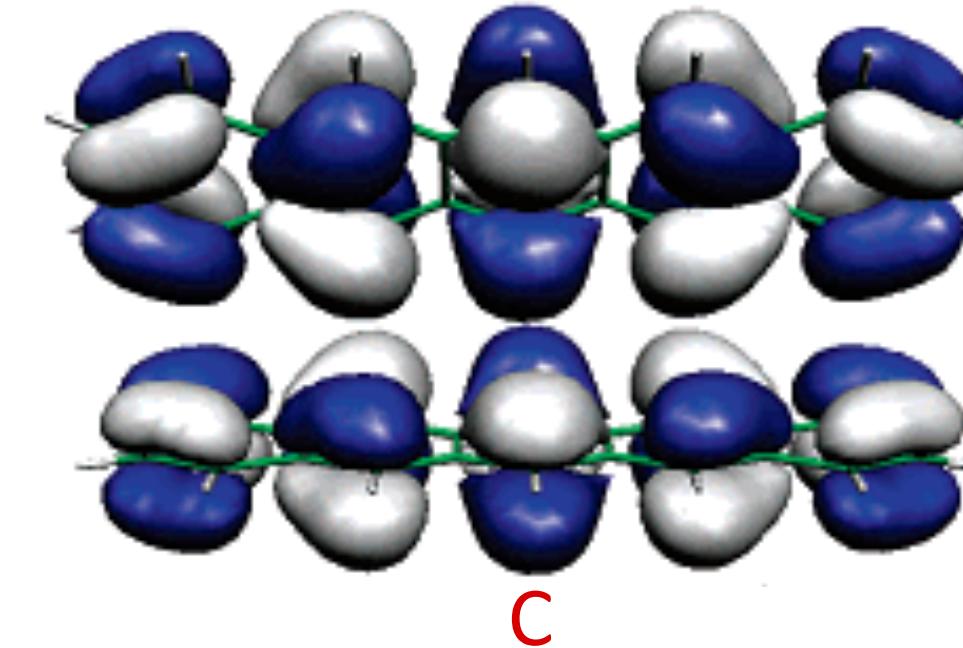

intemolecular couplings

two inequivalent
molecules in unit cell

A

band widths
70–200 meV


\vec{c}

sharp energy
levels

no interlayer coupling

B

C

Learning Outcome

- **Dispersive and quadrupolar π interactions drive the packing of π -conjugated molecules in the solid state**
- **MO interactions are the consequence of dispersive and quadrupolar π interactions !**
- **π molecular orbitals interact because of the resulting parallel-displaced or edge-to-face interactions**
 - π -overlap small but energetically disfavorable in terms of electronic energy
 - overall increase in electron density
- **nevertheless, resulting π -interactions result in narrow, anisotropic intermolecular bands**

Homework and Reading Assignments

View Article Online / Journal Homepage / Table of Contents for this issue

J. CHEM. SOC., CHEM. COMMUN., 1989

621

From Molecular to Crystal Structure; Polynuclear Aromatic Hydrocarbons

Gautam R. Desiraju*^a and A. Gavezzotti^b

^a School of Chemistry, University of Hyderabad, P.O. Central University, Hyderabad 500 134, India
^b Dipartimento di Chimica Fisica ed Elettrochimica e Centro CNR, Università di Milano, via Golgi 19, 20133, Milano, Italy

Crystal structures of fused-ring aromatic hydrocarbons may be predicted from molecular structures using a model where carbon and hydrogen atoms in a molecule are designated 'stack' and 'glide' promoting solely on the basis of their topological connectivity.

The wealth of crystallographic data now available for organic solids has stimulated the search for better general theories to describe their packing.¹ Towards such an attempt, we have analysed the crystal structures of a group of 32 polynuclear aromatic hydrocarbons. We show that: (i) these hydrocarbons may be classified into four packing types based on their shortest crystallographic axis; (ii) the tendency to adopt one of these types by a particular hydrocarbon depends on the relative contribution of carbon and hydrogen atoms to the molecular surface area; (iii) prediction of packing type for any pure polynuclear hydrocarbon is possible from its structural formula alone.

Adapting from earlier work,^{2–4} we have defined four basic packing types for aromatic compounds (Figure 1; Table 1). In the simplest herringbone structure [$5.4 < \text{short axis (s.a.)} < 8.0 \text{ \AA}$] the nearest neighbours are nonparallel. In the sandwich-herringbone packing (s.a. $> 8.0 \text{ \AA}$), the herringbone motif is made up of sandwich-like diads. In the third type, called γ ($4.6 < \text{s.a.} < 5.4 \text{ \AA}$), the main interactions are between parallel translated molecules. The fourth type, called β ($\text{s.a.} < 4.2 \text{ \AA}$) is characterised by 'graphitic' planes. All our 32 structures are monocyclic or orthorhombic and the shortest crystallographic axis is always a screw-axis direction. *This axis is, therefore, a key parameter in separating packing types and defines the crystal structure.* In contrast, the other cell parameters are merely a function of individual molecular geometries.

There is also an energetic basis for our structural classification. In sandwich crystals (which form molecular pairs), the interaction energy to one molecule (the sandwich partner) is unique. However, for herringbone, β -, and γ -structures, there are always pairs of molecules with the same cohesion energy to the reference molecule. Further, for β - and γ -structures, but not herringbone, stabilisation is mainly by the two nearest short-axis translated neighbours.⁵

The crucial link between molecular and crystal structure is the relative ability of a molecule to employ $\text{C} \cdots \text{C}$ and $\text{C} \cdots \text{H}$ interactions. While $\text{C} \cdots \text{C}$ interactions are best optimised between parallel molecules stacked at van der Waals separation, $\text{C} \cdots \text{H}$ interactions are most effective between inclined molecules perhaps because of their supposed Coulombic nature. Therefore $\text{C} \cdots \text{C}$ interactions are

Published on 01 January 1989. Downloaded by ECOLE POLYTECHNIC FED DE LAUSANNE on 14/2021 2:46:35 PM.

Published on 24 April 2012. Downloaded by ECOLE POLYTECHNIC FED DE LAUSANNE on 14/2021 2:46:35 PM.

Table 1. Compounds in this study.

Herringbone: (1) Benzene; (2) Naphthalene; (3) Anthracene; (4) Phenanthrene; (5) Biphenyl; (6) Triphenylene; (7) Benzo[a]anthracene; (8) Chrysene; (9) Benzo[c]phenanthrene; (10) Picene; (11) Dibenz[a,h]anthracene; (12) *p,p*-Quaterphenyl; (33) Tetracene; (34) Pentacene; (35) *p*-Terphenyl; (36) Hexacene.

Sandwich herringbone: (13) Pyrene; (14) Perylene; (15) Benzo[ghi]perylene; (16) Dinaaphtho[a,h]anthracene; (17) Quatterylene (benzo[1,2,3-cd:4,5,6-c'd']diperylene).

γ -Structures: (18) Benzo[a]pyrene; (19) 18-Aannulene; (20) Dibenz[a,k]perylene; (21) Coronene; (22) Dibenz[bc,f]coronene; (23) Dibenz[a,j]coronene; (24) Ovalene; (25) Hexabenzol[bc,ef,hi,kl,op]coronene; (26) Kekulene.

β -Structures: (27) Triphenyl[cd]perylene; (28) Violanthrene; (29) Tetrabenzol[cd,lm]perylene; (30) Diphenanthro[ab,cd,jkl]perylene; (31) Anthra[cd,ef]benzo[kl]naphtho[op]perylene; (32) Tetrabenzo[de,hi,op,sl]pentacene.

View Article Online / Journal Homepage / Table of Contents for this issue

Chemical Science

Dynamic Article Links

Cite this: *Chem. Sci.*, 2012, **3**, 2191

www.rsc.org/chemicalscience

PERSPECTIVE

Rethinking the term "pi-stacking"

Chelsea R. Martinez and Brent L. Iverson*

Received 11th January 2012, Accepted 23rd April 2012

DOI: 10.1039/c2sc20045g

It has become common to reference "pi-stacking" forces or "pi-pi interactions" when describing the interactions between neighbouring aromatic rings. Here, we review experimental and theoretical literature across several fields and conclude that the terms "pi-stacking" and "pi-pi interactions" do not accurately describe the forces that drive association between aromatic molecules of the types most commonly studied in chemistry or biology laboratories. We therefore propose that these terms are misleading and should no longer be used. Even without these terms, electrostatic considerations relating to polarized pi systems, as described by Hunter and Sanders, have provided a good qualitative starting place for predicting and understanding the interactions between aromatics for almost two decades. More recent work, however, is revealing that direct electrostatic interactions between polarized atoms of substituents as well as solvation/desolvation effects in strongly interacting solvents must also be considered and even dominate in many circumstances.

This review seeks to summarize some of the key theoretical and experimental findings related to the interactions that are observed between aromatic molecules. A more detailed picture of the parameters important for defining the geometry and strength of aromatic-aromatic interactions is now emerging. Dominant notions of complementary electrostatic interactions between polarized pi systems^{1,2} are being refined or even supplanted by considering the importance of solvation effects in strongly interacting solvents,^{3,4} as well as the direct interactions between ring substituents.^{5–7}

Given these new insights, it is both timely and useful to question whether the commonly used terms "pi-stacking" and "pi-pi interactions" are appropriate to describe situations in which two or more aromatic rings are associated in some fashion. In particular, "pi-stacking" or "pi-pi interactions" are often cited as a specific type of intermolecular attraction unique to aromatic molecules, with the tacit understanding of an interaction that is distinct from the non-covalent interactions used to describe all intermolecular complexes. But is this really the case? What is the evidence in support of special effects attributable to the structural features of aromatic pi systems that promote intermolecular stacking? Do such considerations specifically apply to the small one- or two-ring aromatic systems that we synthesize and study most often? In other words, is there any unique attraction between aromatic pi systems that favours stacking and transcends the suite of electrostatic attractions, desolvation/solvent effects and induced-electrostatic (London dispersion) forces that influences the association of all molecules? And, if much of what

is called "pi-stacking" is not based upon inherent attraction between pi cloud electron density, nor involves parallel, face-centred stacking that maximizes pi cloud contact, is it still appropriate to deem instances in which aromatic rings are near each other in space as exhibiting "pi-stacking" or "pi-pi interactions".

Several reviews on the interactions between aromatic molecules, focused on both theoretical^{8,9} and experimental studies,¹⁰ have already been written. Here, we summarize the experimental and theoretical evidence and conclude that "pi-stacking" or "pi-pi interactions" are misleading terms because they connote a special type of attraction that is in reality not significant. We therefore propose that these terms should either be reserved for very specific cases yet to be defined or even dropped from common usage altogether when describing the energetics and intermolecular interactions of common aromatic molecules. Note that although they are related, we will not discuss cation-pi,¹¹ anion-pi,^{12,13} pi-hydrogen bonds,¹⁴ or radical-pi interactions, the last of which have gained increased attention lately due to the seminal work of Stoddart and co-workers.^{15,16} A recent thorough review by Diederich covers many of these topics, as well as interactions between aromatic molecules in a comprehensive fashion.¹⁷

We are not the first to suggest that the terms "pi-stacking" and "pi-pi interactions" are widely overused and deserve clarification. Grimme made the same point.¹⁸ In many ways, this review is following his lead by providing our own review of the literature in order to amplify the arguments. In particular, Grimme argued for a more precise definition that reserves the application of the terms to large, multi-ring aromatic systems, a position that we also favour (see below).¹⁸ Marsili *et al.* suggested as much in their work investigating aromatic interactions in over 6,000 solved

Published on 24 April 2012. Downloaded by ECOLE POLYTECHNIC FED DE LAUSANNE on 14/2021 2:46:35 PM.

Downloaded via ECOLE POLYTECHNIC FED LAUSANNE on March 8, 2022 at 05:50:57 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

This journal is © The Royal Society of Chemistry 2012

Chem. Sci., 2012, **3**, 2191–2201 | 2191

View Article Online / Journal Homepage / Table of Contents for this issue

J. Phys. Chem. B **2005**, *109*, 1849–1856

1849

Band Structure of the Four Pentacene Polymorphs and Effect on the Hole Mobility at Low Temperature

Alessandro Troisi* and Giorgio Orlandi

Dipartimento di Chimica "G. Ciamician", Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy

Received: September 18, 2004; In Final Form: November 24, 2004

The band structure of the four known polymorphs of pentacene is computed from first principles using the accurate molecular orbitals of the isolated molecule as the basis for the calculation of the crystalline orbitals. The computed bands are remarkably different for each polymorph, but their diversity can be easily rationalized using a simple analytical model that employs only three parameters. The effect of the electronic structure on the hole mobility was evaluated using a simple model based on the constant relaxation time approximation. It is found that the mobility tensor is highly anisotropic for three of the four considered polymorphs. The practical implication of this prediction on the technology of thin-film organic transistors is discussed.

1. Introduction

The possibility of practical applications for organic semiconductors, demonstrated in the late 1980s¹ and followed by an impressive improvement of the performance and efficiency of the devices based on such materials,² have renewed the interest of many researchers toward this field whose first contributions appeared more than fifty years ago.³ Organic materials (crystals or polymers) based on polycenes, polythiophenes, and polyethylene have been used to realize light-emitting diodes (LEDs), thin-film transistors (TFTs), and photovoltaic cells, and an increasingly large set of data on these systems are now available.^{4–8}

The most important property of these materials is the charge carrier mobility μ , whose lower limit for practical application is $100 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$. Organic synthesis provides, in principle, to fine-tune the charge-transport properties, but the mobility of these materials is very difficult to predict, and the available mobility data lack a proper rationalization. Many groups are therefore active in the development of phenomenological theories⁹ and computational models^{10–12} to provide reliable predictive and interpretative tools.

In ordered organic materials such as pentacene,² the low-temperature transport is described as band-like (i.e., delocalized carriers move coherently across the crystal and are scattered by the lattice phonons). This mechanism is characterized by a power law dependence of the mobility upon the temperature ($\mu \approx T^{\alpha}$)^{14–16}. At higher temperatures ($\sim 300 \text{ K}$), polaron transport becomes important; that is, the charge carriers (and their associated lattice deformation) move by thermally activated hopping leading to an Arrhenius-type temperature dependence of the mobility ($\mu \approx \exp(-E_a/kT)$).^{17,18} The possibility of a unified description of both transport regimes through suitable effective Hamiltonians is discussed by several authors.^{19–21}

While phenomenological theories account qualitatively for the observations, they cannot explain the differences observed for similar materials, for which accurate electronic structure calculations are needed. Analogous materials can show dramatic differences in the transport properties,²² because the interaction between molecules strongly and subtly depends on structural details. We illustrate this point in the present paper, computing

the band structure of the four polymorphs of pentacene and discussing the effect of pentacene polymorphism on the low-temperature hole mobility. Since the first reports of high hole mobility for the pentacene single crystal²³ several groups studied this^{24–28} and related materials^{29–31} for their potential application in organic electronics. Several pentacene polymorphs were grown as thin films^{33–38} and one of the thin-film structures was shown to coincide³⁵ with the bulk single-crystal structure reported by two recent studies.^{32,33} A classification and a rationalization was proposed by Mattheus *et al.*³¹ that also found the conditions to reproducibly grow thin films of four crystal forms.³⁴ The possibility of different transport properties for different growth conditions is of great technological interest. In fact, one of the typical experimental setups involves pentacene thin films, grown on a silicon dioxide surface between the source and drain electrodes, forming a prototype of organic thin-film transistors (OTFTs).

To propose the band structure, we propose a first-principles method that uses accurate molecular orbitals computed for the isolated molecule as basis functions for the crystal wave function. A simple analytical model will be proposed to interpret all the band structure, and the results will be further justified through the use of simple orbital overlap arguments. We will not consider in this paper the polaronic mechanism of conduction, limiting our discussion to band-like low-temperature conduction. According to recent measurements,¹⁶ the band-like transport is the dominant one in pentacene up to ca. 300 K.

2. Method

The most commonly used packages³⁹ for the first-principles computation of band structures have been optimized for the calculation of materials with a relatively small number of atoms in the unit cell and with band gaps ranging from several electronvolts to zero (metals). Molecular crystals contain up to hundreds of atoms per unit cell, and they are usually insulators or semiconductors. The appropriate description of molecular orbitals (MOs) for the isolated molecule requires a split-valence basis set with the inclusion of polarization functions. This basis set makes the calculation of the molecular crystal band structure extremely heavy and the convergence of a self-

Published on 01 January 1989. Downloaded by ECOLE POLYTECHNIC FED DE LAUSANNE on 14/2021 2:46:35 PM.

10.1021/jp0457489 CCC: \$30.25 © 2005 American Chemical Society
Published on Web 01/19/2005

